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a b s t r a c t 

A 3D meso-scale model is developed to predict the flow of liquid within a semi-solid binary Fe-C alloy with various 

equiaxed microstructure, ranging from dendritic to globular. The model domain consists of a set of 8000 grains 

given by a Voronoi tessellation. Solidification of each grain is simulated independently via a volume average 

approach, providing the semi-solid microstructure for the fluid flow simulation. A single domain Darcy–Brinkman 

model is then used to calculate the resulting pressure field. 

The model results are found to be in good agreement with the Carman–Kozeny equation for two limiting cases 

of interfacial area concentration S v , demonstrating the model’s utility in quantifying permeability of semisolid 

structures where the fluid flow occurs either in the intra-dendritic (within the envelope enclosed by the dendrite) 

or extra-dendritic (between dendritic grains) regions. Deviation from Carman–Kozeny behaviour is observed 

with a transition in microstructure, i.e. when the domain contains a mixture of both dendritic and globular struc- 

tures or when fluid flow occurs simultaneously in the intra-dendritic and extra-dendritic regions. A permeability- 

microstructure map is created as a function of grain size, secondary dendrite arm spacing, and cooling rate to 

show the range where the limiting values of S v are valid and, importantly, where they are not. A comparison of 

the net volumetric inflow caused by shrinkage and deformation is performed, demonstrating that the shrinkage 

induced by the peritectic transformation is the dominant factor requiring liquid feeding. The present dendritic 

fluid flow model is useful in the context of multi-physics modelling of defects in peritectic steel grades and other 

commercially relevant alloys. 
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. Introduction 

Dendrite growth is the most common crystallization mechanism

bserved during continuous casting of steel. The morphology character-

zed by the dendrite arms is associated with the formation of secondary

hases and casting defects, most notably hot tearing, porosity and

egregation [1,2] . Advanced continuously-cast high strength steel

labs with high levels of alloying elements as well as complex shape

astings are quite prone to these defect. The formation of casting

efects, especially hot tearing, is a multi-scale problem, and has been

hown to be related directly to the flow of liquid through the dendritic

etwork at the microscale [3] , due to the concomitant phenomena of

olidification induced shrinkage and mushy zone deformation. 

The resistance to liquid flow through a semisolid is known as

ermeability. This important macroscopic parameter is associated with

 pressure drop inside the mushy zone of a casting. It bridges the

icroscale structure with macroscale fluid flow, and is critical for accu-
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ate prediction of defect formation. Permeability was initially proposed

or transport phenomena in porous media, and has been extensively

nvestigated in various material systems. Measurement of permeability

s usually associated with determination of the structure first followed

y a prediction of the fluid flow behaviour [4] . The challenge when

easuring this quantity in metallic systems lies in controlling the

emisolid microstructure during the experiment; reliable data for high

emperature alloys remains rare [5] . Despite the recent application of X-

ay tomography in obtaining the complicated topological images for use

s templates to construct physical models of the dendritic structure [4] ,

he accessibility of accurate experimental apparatuses is limited [6] . 

Predictive numerical simulation is a well-studied alternative to

xperimental investigation of permeability and phenomenological

odels as detailed in Refs. [5,7–10] . Numerical models solve the Stokes

quations for a domain representing the liquid phase within the mushy

one. The obvious advantage of using a simulated microstructure is

hat the evolution of permeability with solid fraction can be easily
. 

https://doi.org/10.1016/j.mtla.2020.100612
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mtla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mtla.2020.100612&domain=pdf
mailto:andre.phillion@mcmaster.ca
https://doi.org/10.1016/j.mtla.2020.100612
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Fig. 1. (a) Meso-scale simulation domain containing 1000 grains; (b) single Voronoi grain; (c) polyhedral structure; (d) tetrahedron with an illustrative schematic 

of the equiaxed-dendritic microstructure. 
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tudied for different grain sizes and morphologies. However, the main

hallenge with this method is the geometry itself, since permeability

s a characteristic that is based on the channel width, surface area and

ortuosity of the flow channels [8] . Recently, 3D synchrotron X-ray to-

ography has been used to acquire representative semisolid geometries

or assessing permeability during equiaxed dendritic [5] and columnar

olidification [10] , and to investigate the effects of intermetallics [11] .

lthough these studies have shown good agreement between calculated

ermeability and experimental reference data, the availability of high-

uality 3D datasets has limited the use of this approach to well defined

ystems. For industrial applications, there is a need for improved

nderstanding of permeability in a wide range of microstructures. 

The recent development of a meso-scale granular model of solidifi-

ation offers new possibilities for predicting permeability in semi-solid

etallic alloys [12,13] . This model can simulate a set of 1000 or more

andomly-placed grains within a domain. The grains are individually

epresented and the flow of liquid between the grains is simulated. A 2D

iscrete-element model of fluid flow proposed by Vernède et al. [14] de-

cribed the liquid feeding along the grain boundaries of the mushy

one. This approach was then extended to 3D by Sistaninia et al. [15] ,

nd further modified by Zareie-Rajani and Phillion [16] to investigate

henomena relevant to hot tearing in aluminum alloys during welding.

hese prior granular solidification models assumed a microstructure

onsisting of globular equiaxed grains, and modelled the flow between

djacent grain surfaces as Poiseuille flow between two parallel plates.

ecause of these limitations, they cannot be used to assess the perme-

bility of a dendritic microstructure. In the dendritic case, liquid flow

ccurs both in the extra-dendritic region between grains as well as in the

ntra-dendritic small-scale structure within a grain. The friction encoun-

ered by the flow through intra-dendritic liquid channels could lead to

n additional pressure drop thus accelerating the formation of defects. 

In the present study, a 3D meso-scale model is proposed to simulate

uid flow during the solidification of a binary Fe-C alloy mushy zone

ontaining both intra-dendritic and extra-dendritic flow and taking

nto account shrinkage caused by the peritectic transformation and

eformation. The meso-scale simulation domain is created using a

oronoi tessellation; solidification of each grain occurs independently

ia a volume average approach [17,18] . First, the methodology for

reating a semi-solid domain consisting of equiaxed-dendritic grains

urrounded by liquid is reviewed. Second, the new liquid flow model

s described. Third, the model is applied to investigate permeability in

 wide combination of microstructures, alloy compositions and flow

onfigurations during solidification in order to create a map of the re-

ulting permeability. Finally, the results are compared with predictions

f previous simple models and assessed in the context of casting defects.
. Description of the 3D meso-scale fluid flow model for dendritic

lloys 

.1. Generation of the model domain 

In order to investigate the effects of fluid flow within the semisolid

e-C alloy, a model domain must be utilized that is large enough to cap-

ure long-range flow effects while small enough to discretize individual

rains, in other words, a domain that contains hundreds (or more)

rains. This study utilizes the 3D equiaxed-dendritic meso-scale solidifi-

ation model, previously described in [19] , to create an appropriately-

ized model domain. An example, containing 1000 grains, is shown in

ig. 1 (a); the empty space within the domain represents the remaining

iquid. To create this geometry, a Voronoi tessellation is applied to ap-

roximate the final grain morphology based on randomly-placed seeds

cting as nuclei for equiaxed-dendritic grains. Each grain, Fig. 1 (b), is

 polyhedral structure, which is then divided into smaller polyhedrons,

ig. 1 (c), and finally a tetrahedron, Fig. 1 (d). Solidification is simulated

ithin each tetrahedron independently of all others, as described below.

.2. Dendritic solidification model 

Although the complete details of the 3D meso-scale dendritic solid-

fication model are given in [19] , the salient points are recalled below

or clarity. Given that the microstructure of steels is dendritic, the

volution in solid fraction within each tetrahedron is predicted using a

olume average approach [17,18] . The main advantage of this approach

s its ability to model solidification using at least three and possibly four

hases, extra-dendritic liquid l ed , intra-dendritic liquid l id , delta-ferrite

and austenite 𝛾, without explicitly tracking the interfaces between the

hases. The 𝛿 and/or 𝛾 phases nucleate from one vertex of the tetrahe-

ron corresponding to the center of the grain in an undercooled liquid

nd grow in a radial direction until the tetrahedron is fully solidified.

he entire tetrahedron is considered to be at uniform temperature. A

endritic grain is defined by its envelope, which controls the solid ( 𝛿 and

) phases, the intra-dendritic liquid phase ( i.e. the liquid enclosed by the

endrite envelope), and the extra-dendritic liquid phase ( i.e. the liquid

utside the dendrite envelope). The phases are described by their vol-

me fractions ( 𝑔 𝑒𝑑 
𝑙 
, 𝑔 𝑖𝑑 

𝑙 
, g 𝛿 and g 𝛾 ) and average chemical compositions.

pon cooling a solute mass balance is performed to track the position of

he dendrite envelope under the assumption of finite diffusion in l ed , l id ,

nd 𝛿 or 𝛾. Note that the dendritic morphology indicated in Fig. 1 (d) can-

ot be visualized by the unstructured mesh given in Fig. 1 (a); this image

hows only the equivalent solid phase fraction in a geometric sense with

he empty space including both the intra- and extra- dendritic liquid. 
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Fig. 2. Schematic diagram of two facing tetrahedrons, the velocity profile of 

fluid passing through the inter- and extra- dendritic regions, and the correspond- 

ing 3-node 2D triangular element. The velocity profiles for the cases with only 

intra-dendritic and only extra-dendritic flow are also shown. 
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.3. Mushy zone fluid flow model 

The 3D semisolid structure created by the solidification model

t a given solid fraction for a specified cooling rate and grain size

s used as the input geometry for the fluid flow model at the same

olid fraction. The two models, solidification and fluid flow, are only

ne-way coupled. The mesh consists of a set of elements, each made

p of two facing tetrahedrons as shown in Fig. 2 , that are ultimately

educed to a set of two 3-node 2D triangular elements. The regions

nclosed by the dendrite envelopes of each tetrahedron are treated as

 uniform porous medium [20] with an internal liquid fraction given

y 𝑔 ′
𝑙 
= 𝑔 𝑖𝑑 

𝑙 
∕( 𝑔 𝑖𝑑 

𝑙 
+ 𝑔 𝛿 + 𝑔 𝛾 ) . The extra-dendritic regions of each element,

aving a width equal to the distance between the facing envelopes,

re treated as an extra-dendritic fluid channel. Note that the two

acing tetrahedrons are identical due to symmetry [15] . Flow can occur

imultaneously through both the intra- and extra- dendritic regions as

hown schematically in Fig. 2 (solid blue line). In the limit of 𝑔 ′
𝑙 
= 0 ,

he model is reduced to the model of flow between two globular grains,

quivalent to the model of Sistaninia [15] . In another limit, where the

endrite tips touch and all remaining liquid is intra-dendritic liquid

 𝑔 𝑒𝑑 
𝑙 

= 0 , 𝑔 𝑖𝑑 
𝑙 

= 𝑔 ′
𝑙 
), the whole structure behaves as a porous medium

ith a liquid fraction 𝑔 ′
𝑙 

and a characteristic length scale given by the

econdary dendrite arm spacing. In these two situations, also shown in

ig. 2 , the corresponding flow is either Poiseuille flow (red dashed line)

r Darcy–Brinkman flow (green dashed line). 

The flow in the extra-dendritic region is described as a Poisseuille

ow and the flow in the intra-dendritic region is described by the

arcy–Brinkman equation, using an averaged form of the Navier–

tokes equation. The model assumptions include quasi-steady-state

s well as irrotational flow that is parallel to the triangular facet

ighlighted in blue in Fig. 2 where the two tetrahedrons meet. Both

ravity and pressure gradients along the length L of the element are

eglected. Altogether, this is expressed as, 

∇ 𝑝 + 𝜇𝑙 
𝑑 2 𝑣 𝑒𝑑 

𝑑 𝑧 ′2 
= 0 , (1) 

 𝑔 ′
𝑙 
∇ 𝑝 + 𝜇𝑙 

𝑑 2 𝑣 𝑖𝑑 

𝑑 𝑧 ′2 
− 

𝜇𝑙 𝑔 
′
𝑙 

𝐾 

(
𝑔 ′
𝑙 

)𝑣 𝑖𝑑 = 0 , (2) 

here 𝜇l represents the dynamic viscosity, ⃗𝑣 𝑒𝑑 is the fluid velocity in the

xtra-dendritic region, p is the gauge pressure, 𝑣 𝑖𝑑 is the intra-dendritic

uid velocity vector and 𝐾 

(
𝑔 ′
𝑙 

)
is the local permeability within the den-

rite envelope. The reader is referred to [21] for detailed information of

he averaging concepts along with the process of deriving the average

orm of the master equation. The Carman–Kozeny equation [22,23] , 

( 𝑔 ′
𝑙 
) = 

(
𝑔 ′
𝑙 

)3 
5 𝑆 

2 
𝑣 

, (3)

here S v represents the interfacial area concentration, is used to

etermine K at the scale of an individual element. The term S is
v 
pproximated as 𝑆 𝑣 = 

2 
𝜆2 

with 𝜆2 representing the secondary dendrite

rm spacing. 

We assume that 𝜕 

𝜕𝑧 ′
𝑣 𝑒𝑑 |𝑧 ′=0 = 0 and 𝑣 is finite when z ′ →∞. At the

nvelope we use the boundary conditions between the porous medium

nd a fully liquid zone, proposed by Le Bars and Grae Worster [21] :

⃗ 𝑒𝑑 |𝑧 ′= ℎ = 𝑣 𝑖𝑑 |𝑧 ′= ℎ and 𝜕 

𝜕𝑧 ′
𝑣 𝑖𝑑 |𝑧 ′= ℎ = 

𝜕 

𝜕𝑧 ′
𝑣 𝑒𝑑 |𝑧 ′= ℎ . Eq. (1) and ( 2 ) can be

olved analytically, 

⃗ 𝑒𝑑 = 

( 

𝑧 ′2 

2 𝜇𝑙 

+ 𝐶 1 

) 

∇ 𝑝, (4) 

⃗ 𝑖𝑑 = 

( 

𝐶 2 𝑒 
𝑧 ′
𝜉 − 𝐶 3 

) 

∇ 𝑝. (5) 

In Eqs. (4) and ( 5 ), C 1 and C 2 represent two unknown constants,

 3 = 

𝑔 𝑙 ′ 𝜉
2 

𝜇𝑙 
and 𝜉 = 

√ 

𝐾 
(
𝑔 ′
𝑙 

)
𝑔 ′
𝑙 

. The unknown constants can be further

olved with additional constraints at the envelope shown above: all of

he fields within the representative volume are continuous, the velocity

⃗ and the viscous stress at the interface between the intra-dendritic and

xtra-dendritic regions must be continuous. Then, 

 1 = − 

𝜉ℎ 

𝜇𝑙 

− 

𝑔 ′
𝑙 
𝜉2 

𝜇𝑙 

− 

ℎ 2 

2 𝜇𝑙 

, and , (6) 

 2 = 

− 

𝜉ℎ 

𝜇𝑙 

𝑒 
− ℎ 

𝜉

, (7) 

here h is the half width of the extra-dendritic region. 

The controlling equation for the fluid flow problem can be derived

hrough integration based on a mass balance over the two facing

etrahedrons shown in Fig. 2 assuming liquid incompressibility, i.e.

 ⋅ 𝑣 𝑙 = 0 . This region includes both flow as a porous medium within

he dendrite envelope and free liquid flow in the extra-dendritic

egion. This mass balance also needs to consider both the solidification

hrinkage and deformation as factors that would induce liquid flow.

he shrinkage induced by solidification due to the density variations in

he solid and liquid phase will induce a normal velocity of liquid flow

t the solid/liquid interface [24] , 

⃗ 𝑙⋅𝑛 = − 𝛽𝑣 ∗ , (8)

here v ∗ is the solid/liquid interface velocity predicted by the 3D

eso-scale solidification model at the specific solid fraction being used

n the fluid flow simulation, and 𝛽 = 

(
𝜌𝑠 ∕ 𝜌𝑙 − 1 

)
is the shrinkage factor

ith 𝜌s and 𝜌l representing the temperature-dependent solid and liquid

ensities. For non-peritectic alloys, 𝜌𝑠 = 𝜌𝛿 . For low carbon steel alloys

aving a peritectic transformation, 𝜌s is given by 

𝑠 = 

𝜌𝛿𝑔 𝛿 + 𝜌𝛾𝑔 𝛾

𝑔 𝛿 + 𝑔 𝛾
, (9) 

𝛿 = 3 . 07 × 10 −1 
(
𝑇 𝛿,𝑠𝑡𝑎𝑟𝑡 − 𝑇 

)
+ 7270 , (10) 

𝛾 = 4 . 8 × 10 −1 
(
𝑇 𝛾,𝑠𝑡𝑎𝑟𝑡 − 𝑇 

)
+ 7410 , (11) 

𝑙 = −7 . 5 × 10 −1 
(
𝑇 − 𝑇 𝐿,𝑠𝑡𝑎𝑟𝑡 

)
+ 7020 , (12) 

here 𝜌𝛿 , and 𝜌𝛾 represent the densities (kg · m 

-3 ) of the 𝛿 and 𝛾 phases

iven by the expressions in Eqs. (10) –(12) with different coefficients

kgm 

-3 K 

-1 ) [25] , T represents the temperature (K) with T i,start being the

ransformation temperatures of the i phase ( 𝑖 = 𝑙, 𝛿 or 𝛾), and g 𝛿 and

 𝛾 are given by the 3D meso-scale solidification model at the specified

olid fraction being used in the fluid flow simulation. Note that the

hrinkage factor will vary during solidification since the individual

ensities 𝜌𝛿 , 𝜌𝛾 , and 𝜌l are temperature-dependent. 

Deformation of the semi-solid skeleton will also induce liquid flow.

ssuming rigid body motion of the grains and deformation localized

o the liquid phase, the increase in volumetric flow rate Δv liq that is

equired to compensate for deformation at the scale of an individual

lement can be approximated as 

𝑣 𝑙𝑖𝑞 = 

𝜀̇ 𝑠𝑣 (
1 − 𝑔 𝑠 

) ∗ 𝑉 𝑙𝑖𝑞 , (13)
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Fig. 3. Internal solid fraction evolution within a single grain with a final di- 

ameter of 300 μm under three cooling rates along with the schematic diagrams 

of intra-dendritic, extra-dendritic and both fluid flow types. The dashed line 

represents the curve 𝑔 ′
𝑠 
= 𝑔 𝑠 . 
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here 𝜀̇ 𝑠𝑣 is the volumetric part of the strain rate applied on the domain,

nd calculated via 𝜀̇ 𝑠𝑣 = 𝜀̇ 𝑥𝑥 + 𝜀̇ 𝑦𝑦 + 𝜀̇ 𝑧𝑧 , and V liq represents the volume

f liquid present in an element. Note that while Eq. (13) simulated

he effects of mechanical deformation on fluid flow in a semi-solid,

echanical deformation itself is not directly simulated. 

Applying the divergence theorem, the mass balance becomes 

𝑉 𝑒 
𝑙 

∇ ⋅ 𝑣 𝑙 𝑑𝑉 = 2 ⋅ ∫𝑆 𝑒 
𝑠𝑙 

𝑣 𝑙 ⋅ 𝑛 𝑑𝑆 + 2 ⋅ ∫𝑆 𝑒 
𝑙 

𝑣 𝑙 ⋅ 𝑛 𝑑𝑆 + 2 ⋅ Δ𝑣 𝑙𝑖𝑞 = 0 , (14)

here 𝑉 𝑒 
𝑙 

represents the total volume of the two facing tetrahendrons,

 

𝑒 
𝑠𝑙 
= 𝑆 𝑣 ⋅ 𝑉 

𝑒 is the dendritic solid/liquid interfacial area, V 

e represents

he total volume of dendrite envelope, and 𝑆 

𝑒 
𝑙 

represents the total lateral

rea of the two tetrahedral elements. Then, by substituting Eqs. (4) and

5) into the second right term of Eq. (14) , and assuming that the first

ight term of Eq. (14) can be replaced by 𝑆 

𝑒 
𝑠𝑙 
⋅ 𝑣 𝑙⋅𝑛 = − 𝑆 

𝑒 
𝑠𝑙 
⋅ 𝛽𝑣 ∗ , one

btains the master fluid flow equation for dendritic flow, 

2 ∫𝑆 𝑒 
𝑙 

( 

𝑧 ′2 

2 𝜇𝑙 

+ 𝐶 1 

) 

∇ 𝑝 ⋅ 𝑛 𝑑𝑆 + 2 ∫𝑆 𝑒 
𝑙 

( 

𝐶 2 𝑒 
𝑧 ′
𝛿 − 𝐶 3 

) 

∇ 𝑝 ⋅ 𝑛 𝑑𝑆 

− 2 𝑣 ∗ 𝛽𝑆 

𝑒 
𝑠𝑙 
+ 2 ⋅ Δ𝑣 𝑙𝑖𝑞 = 0 . (15)

.4. Numerical implementation of fluid flow model 

At the scale of a single element, integration of Eq. (15) over the intra-

endritic and extra-dendritic parts is computed numerically by dividing

oth the grain envelope length and extra-dendritic liquid channel width

nto 𝑛 = 1000 segments along the height of tetrahedral element. By doing

he integration and applying Green’s theorem over each segment, one

btains the coefficient of the Laplacian of the pressure field, ∇ 

2 p . Then,

s it has been assumed that the flow direction is parallel to the exterior

riangular facet of each tetrahedron, the 3D mesh is simplified to a set of

-node 2D triangular elements. The resulting pressure field is given by 

 𝑙 = 

3 ∑
𝑖 =1 

𝑁 𝑖 𝑝 
∗ 
𝑖 , (16)

here 𝑝 ∗ 
𝑖 

represents the nodal pressures, and N i represents the shape

unctions of the triangular element that approximate the pressure field

ithin element e in the local ( x ′ , y ′ , z ′ ) coordinate system. Applying

he Galerkin finite element method to Eq. (15) , the elemental matrix

quation is obtained: 

 𝐾 ] 𝑒 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝑝 ∗ 1 
𝑝 ∗ 2 
𝑝 ∗ 3 

⎫ ⎪ ⎬ ⎪ ⎭ = 𝑏 𝑒 + { 𝜙} 𝑒 , (17)

here [ K ] e represents the element stiffness matrix, b e is the load vector

hich results from solidification shrinkage and/or deformations exerted

n the domain, and { 𝜙} e is related to the external boundary conditions.

Once the individual element matrices have been developed, they are

ssembled together into the global stiffness matrix. This global matrix

s then solved with a conjugate gradient linear iterative method using

 free open access program C++ library known as IML++ [26] . The

olution provides the pressure throughout the domain. Complete details

f the numerical implementation can be found in [15] . 

. Results and discussions 

To study liquid feeding within a semisolid, the microstructure and

he solid fraction of individual grain needs to be determined first; the

ocal solid fraction predicted by the solidification model [19] provides

oth the local permeability at the grain scale through Eq. (3) and the

xtra-dendritic liquid channel width. 

Fig. 3 shows the evolution in internal solid fraction ( 𝑔 ′𝑠 = 1 − 𝑔 ′
𝑙 
)

iven by the solidification model under three cooling rates (1, 5, and

5 K/s) for an Fe-0.07 wt%C grain with a final diameter of 300 μm,

long with schematics of the corresponding flow patterns. 
At the highest cooling rate of 55 K/s, the solidification model predicts

 semisolid structure where the dendrite tips touch each other at a solid

raction of 0.45 (i.e where this curve intersects the 𝑔 ′𝑠 = 𝑔 𝑠 curve). Be-

ond this solid fraction all the liquid is intra-dendritic, and thus the flow

ould also be intra-dendritic as illustrated in the ”upper right ” diagram

f Fig. 3 . As g s increases, the permeability of the porous medium would

orrespondingly be reduced. For the low cooling rate of 1 K/s, the grain

orphology transitions from dendritic to globular at g s = 0.22 as 𝑔 ′𝑠 → 1 .
t is at this point that the existing dendrite structure becomes fully solid;

he remaining extra-dendritic liquid within the element then solidifies

n globular fashion. In a globular grain morphology, the permeability

ithin the dendrite envelope is zero, and fluid flow will only take place

n the extra-dendritic region as shown in the ”middle right ” diagram.

t moderate cooling rates, both intra-dendritic and extra-dendritic flow

an take place as shown in the ”lower right ” diagram since the grain is

endritic yet the dendrites from adjoining grains have not yet touched.

n the case of 5 K/s, this flow pattern is possible until g s ∼0.75 at which

oint the flow would become extra-dendritic since 𝑔 ′𝑠 → 1 . 
The flow patterns qualitatively described in Fig. 3 can be quantita-

ively described using the 3D fluid flow model. For these simulations,

 domain 6 × 6 × 6 = 216 mm 

3 with 8000 cubic grains each 300 μm

n equivalent diameter ( 𝑑 = 

3 
√
𝑉 𝑔 with V g being the grain volume),

ssuming a dynamic viscosity of 𝜇𝑙 = 7 . 0 × 10 −3 Pas [27] , and neglecting

olidification shrinkage and deformation ( 𝛽= 0, 𝜀̇ 𝑠𝑣 = 0) was utilized. The

econdary arm spacing was kept 𝜆2 = 20 μm. The boundary conditions

ere set as follows: a constant pressure on the top surface where the

uid is drawn in, i.e. 𝑝 0 = 0 Pa, a constant non-zero average flux on the

ottom surface of -20 μm 

3 /μm 

2 s -1 and closed lateral boundaries, i.e.

 l = 0 μm 

3 /μm 

2 s -1 . Due to non-zero fluid flux on the bottom surface

nd closed lateral surfaces, downward flow inside the domain occurs,

rawing fluid in from the top surface. 

Fig. 4 shows pressure maps for three semisolids, each at 𝑔 𝑠 = 0 . 60 ,
ontaining cubic equiaxed grains created under different cooling rates

1, 5, and 55 K/s). The results provide a general view of the pressure

istribution and the different pressure drops resulting from different

icrostructures. The pressure is seen to decrease almost linearly from

he top to the bottom, indicating that the further away from the top

f the domain the lower pressure is. A significant pressure drop is

bserved with the high cooling rate of 55 K/s ( Fig. 4 (c)), achieving a

ocal value of − 986 Pa. This is an indication that a higher resistance of

iquid is found when liquid going through an intra-dendritic network

s compared to globular structure ( Fig. 4 (a)), where free fluid flow

ccurs only in the extra-dendritic zone. Between the two extreme cases,

he presence of the liquid in both extra-dendritic and intra-dendritic

egion leads to an intermediate pressure drop ( Fig. 4 (b)). Although
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Fig. 4. Pressure distribution within a domain containing 8000 grains at 

g s = 0.60 solidified under three cooling rates: (a) CR = 1K/s, (b) CR = 5K/s and (c) 

CR = 55K/s. Note that (a) and (b) share the same color bar. 
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Fig. 5. Validation of permeability predicted by present model with the Carman–

Kozeny equation for a uniform network of grains with microstructure solidified 

under the cooling rate of 1K/s, 5K/s and 55K/s. 
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t is unrealistic to assume a constant grain size (the same equivalent

rain diameter) for different cooling rates, we have done this for the

urpose of decoupling cooling rate and grain size effects as they relate

o flow behaviour. As the fully solidified structure is generated using

 Voronoi tessellation, the average grain size could be varied as a

unction of cooling rate based on an empirical equation; however grain

ize measurement of primary delta grains are very challenging because

f the 𝛿 to 𝛾 solid state phase transformation. 

.1. Permeability assessment 

.1.1. Limiting cases and transition tested 

The dendritic fluid flow model can be verified by comparing its

redictions of permeability against corresponding predictions from

he analytical Carman–Kozeny equation for two scenarios: a dendritic

tructure with 𝑆 𝑣 = 

2 
𝜆2 

[20] (termed Dendritic S v ) and a globular

tructure with S v calculated as the sum of the grain surface areas

ssuming globular structure divided by the volume of the whole do-

ain [15] (termed Globular S v ). For these tests, a series of simulations

ere performed between 0.5 < g s < 1 under the conditions described

reviously using uniform cubic grains. The permeabilities predicted

y the simulations can then be calculated from the average pressure

ifference between the top and bottom surfaces, 

 = 𝜇𝑙 

𝑞 1 (
𝑝 1 − 𝑝 0 
𝐿 𝑑𝑖𝑠 

) , (18)

here L dis is the distance between the two surfaces, p 1 is the averaged

ressure on the bottom side of the domain, and q 1 is the flux on the

ottom surface. Note that as there is a single grain size and a uniform

emperature applied to the entire domain, there can be no variation in

he permeability between individual cubic grains. 

Fig. 5 compares the permeability predicted by the 3D fluid flow

odel and the values calculated with the Carman–Kozeny equation

tilizing the Dendritic S v and the Globular S v . As can be seen, an

xcellent match is achieved between the simulations with a cooling rate

f 55 K/s (green diamonds) and the dendritic-flow analytical solution.

n this scenario, 𝑣 𝑒𝑑 is zero and the domain is a porous medium with

 uniform 𝑣 𝑖𝑑 flowing through the intra-dendritic regions. Further, an

xcellent match is achieved between the simulations with a cooling

ate of 1 K/s (red circles) and the globular-flow analytical solution. In

his scenario, flow occurs only in the extra-dendritic regions. 
The interesting result occurs for the permeabilities calculated from

he simulation using a cooling rate of 5 K/s (blue triangles). As can be

een, there is a significant deviation between the model’s predictions

nd the Carman-Kozeny equation using the two limiting values for S v 
p to a solid fraction of ≈ 0.75. Initially, the dendrite envelope grows

nto the liquid and 𝑔 ′𝑠 is relatively low ( Fig. 3 ). Fluid thus flows through

oth the intra-dendritic and extra-dendritic regions, causing the perme-

bility to fall between the dendritic and globular cases. As 𝑔 ′𝑠 → 1 , flow

ecomes predominantly extra-dendritic and eventually the permeability

ollows the Carman–Kozeny equation derived based on the Globular S v .

By testing the numerical results against an analytical equation, the

resent model is shown to be an alternative technique for obtaining the

emisolid permeability. The calculated values could also be compared

o experimental measurements using the given interfacial surface area

oncentration to provide additional insight. 

.1.2. Influence of grain size on the permeability 

The assumption made in Fig. 5 was of uniform grain size. However,

his is not a realistic description of microstructure. Fig. 6 (a) shows

he relative frequency of grain size in a 3D domain created using the

oronoi tessellation for an average grain size of 300 μm. Fig. 6 (b)

hows the corresponding evolution in 𝑔 ′𝑠 for five different grain sizes

ach solidified using a cooling rate of 5 K/s. As can be seen, for smaller

rains (60 μm), 𝑔 ′𝑠 quickly approaches 1 and thus forms a globular

tructure due to the constraints of solute enrichment in front of the

olid/liquid interface, whereas for coarse grains (722 μm) the dendrite

ip is free to move until impingement with neighbouring grains. Thus,

t a specific time, which corresponds to a specific bulk solid fraction,

uid flow takes place in the extra-dendritic region for smaller realistic

rains, passes through the intra-dendritic region for these grains which

re impinging with their neighbours, and has mixed characteristics for

rains at intermediate size levels. 

Given the intrinsic variability in grain size, the permeability within a

emisolid will be influenced by this quantity. Fig. 7 shows the permeabil-

ty within a domain with 8000 grains, having an average grain size of

00 μm, predicted by the fluid flow model containing a mixture of both

lobular and dendritic grains of realistic geometry. It can be seen that at

ower solid fraction, the permeability of the mushy zone neither follows

he intra-dendritic flow behaviour (Carman–Kozeny with Dendritic S v )

or the extra-dendritic flow behaviour (Carman–Kozeny with Globular

 v ) but is a mixture of both. Eventually, the permeability approaches

he Carman–Kozeny permeability for structure with Globular S . In this
v 
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Fig. 6. (a) Equivalent grain size d distribution within the semisolid domain and 

(b) the variation in 𝑔 ′
𝑠 

for five grains containing different sizes. 
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Fig. 7. Variations of permeability as a function of solid fraction for a semisolid 

domain containing both intra-dendritic and extra-dendritic flow. 
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ealistic case the Carman–Kozeny equation with Dendritic S v does not

rovide a good analytical description of permeability until 𝑔 𝑠 = 0 . 96 . 

.1.3. Permeability-microstructure map 

Referring to Fig. 7 , it can be seen that the semisolid permeability

an only be predicted by the Carman–Kozeny equation with Dendritic

 v or Globular S v over a small range of solid fraction; outside of this

ange there is a great deviation from either the dendritic or the globular

ases. This deviation has not been identified before. In order to show

he range of validity of the Carman–Kozeny equation using these two

imiting cases in predicting the mushy zone permeabilities in metallic

lloys, a series of quasi-steady flow simulations were performed, by

arying the solid fraction (30 values), cooling rate (10 values assuming

n average grain size of 300 μm and a secondary arm spacing of 20 μm),

nd grain size (10 different values assuming a cooling rate of 10 K/s),

sing a domain containing 8000 realistic grains with an average grain

ize of 300 μm, to provide over 600 unique permeability values. These

imulations again neglected solidification shrinkage and deformation

 𝛽= 0, 𝜀̇ 𝑠𝑣 = 0). 

Fig. 8 provides two permeability maps that show the range of

olid fraction where the Carman–Kozeny equation with Dendritic S v 
r Globular S v is valid in predicting permeability; (a) as a function of

ooling rate and (b) as a function of dimensionless grain size d /(2 · 𝜆2 ).

ach map is divided into two shaded areas corresponding to Globular

 and Dendritic S , and an unshaded area where neither expression
v v 
atches the simulation result within the tolerance of 50%. Beginning

ith Fig. 8 (a) it can be seen that under conditions of lower cooling rates

he Carman-Kozeny equation with Globular S v is most appropriate; the

alid solid fraction range will decrease with increasing cooling rate and

s no longer valid once the cooling rate exceeds 15 K/s. At high cooling

ates especially greater than 10 K/s, the Carman–Kozeny equation with

endritic S v is most appropriate over a wide range of solid fraction.

owever, at low solid fraction there are no circumstances where the

imulated permeability matches the analytical expressions. Further,

here is an important combination of cooling rate and solid fraction

here neither analytical expression is valid, covering all solid fractions.

ny macroscale model, having the same solidification conditions, and

tilizing the Carman–Kozeny equation with one of these two limiting

ases could show discrepancies as compared to experimental findings.

urning now to Fig. 8 (b), it can be seen that the Carman–Kozeny

quation with Dendritic S v or Globular S v is no longer valid when

 /(2 · 𝜆2 ) is greater than 30 for the specific cooling rate of 10 K/s.

t lower values of this dimensionless grain size the Carman–Kozeny

xpression for globular structures is found to be valid at very high solid

ractions as the liquid is mostly dominated by the extra-dendritic flow

hereas the Carman–Kozeny expression for dendritic structures is only

alid over a very small range of parameters. 

It is clear that from Figs. 6 to 8 that the permeability of a semisolid

omain containing a mixture of two morphologies cannot be predicted

ith the Carman–Kozeny equation via a single scaling law for S v 
hroughout the whole solid fraction range. Although this is commonly

one in macrosegregation simulations, it makes the permeability as-

essment less accurate. Utilizing our 3D equiaxed-dendritic meso-scale

olidification model [19] , it is possible to calculate S v for a domain

ontaining multiple morphologies as 

 𝑣 = 

𝑁 𝑒𝑙𝑒𝑚 ∑
𝑖 =1 

𝑆 

𝑒 
𝑠𝑙 

𝑉 𝑑𝑜𝑚𝑎𝑖𝑛 
, (19)

ith 𝑆 

𝑒 
𝑠𝑙 
= 

{ 2 
𝜆2 

⋅ 𝑉 𝑒𝑛𝑣 , 𝑔 
′
𝑠 < 𝑔 ′

𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙 

S 𝑔𝑙 𝑜𝑏𝑢𝑙 𝑒 , 𝑔 ′𝑠 ≥ 𝑔 ′
𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙 

where N elem 

represents the total

umber of elements within the domain. 𝑆 

𝑒 
𝑠𝑙 

represents the solid/liquid

nterfacial area of an individual element, V domain is the total volume of

he domain, V env is the volume of the dendrite envelope and S globule is

he surface area of globular element. 

The key point in determining the S v through our solidification model

s identification of the internal solid fraction 𝑔 ′𝑠 at which flow within an

ndividual element is dominated by intra-dendritic or extra-dendritic

haracter; if the 𝑔 ′𝑠 is greater than critical point 𝑔 ′
𝑐 𝑟𝑖𝑡𝑖𝑐 𝑎𝑙 

the element is
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Fig. 8. Permeability map as a function of solid fractions and (a) cooling rate as 

well as (b) dimensionless grain size, d /(2 · 𝜆2 ). 
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reated as globular and intra-dendritic liquid flow is ignored. Fig. 9

lots the permeability calculated from the Carman–Kozeny equation

tilizing the solidification model -calculated S v for five different critical

alues of 𝑔 ′𝑠 as well as the dendritic S v and globular S v cases, along

ith the prediction from the 3D fluid flow model for a cooling rate

f 5 K/s and the phenomenological macroscale permeability model of

ang et al. [20] (applied using a grain size of 300 μm and a dendrite

nvelope sphericity 𝜙𝑒 = 1 ). As can be seen, the approach to calculate

 v via the 3D equiaxed-dendritic meso-scale solidification model results

n a clear transition zone in permeability from dendritic to globular

haracter and matches much more closely to the 3D fluid flow model

redicted values than the dendritic S v and globular S v cases, and Wang’s

odel. However, deviations still exist and the importance of selecting

he “right ” value of 𝑔 ′
crit ical 

is evident since a higher value provides a

maller deviation at higher solid fractions but then under-estimates

he permeability at lower solid fraction. The determination of 𝑔 ′
crit ical 

equires further investigation both experimentally and numerically.

he observed differences could also be due to limitations within the

D fluid flow model, which is built on the assumptions of a uniform

orous medium within the dendrite envelope with locally 𝑆 𝑣 = 

2 
𝜆2 

nd Poiseuille flow when 𝑔 ′𝑠 ∼ 0 . Another option for overcoming the

imitations of using S v calculated by 𝜆2 would be to use a general form

hat considers grain growth, coalescence and impingement [2] . 

It should be noted that Wang’s model also shows a transition regime,

ut the overall permeability predicted by this phenomenological ap-
roach matches with the Carman–Kozeny results for globular S v at a

uch lower solid fraction ∼ 0.68 than our model-predicted values.

his is due to the simplified assumption of average grain size used

n Wang’s model which fails to consider the influence of grain size

istribution and thus the flow path within different grains. 

.1.4. Localization of liquid feeding 

In a domain that contains different grain sizes, different semisolid

orphologies are possible as shown in Fig. 6 (b). Due to these different

orphologies, flow is likely to concentrate in areas with a higher

ocal permeability. To reproduce this feeding localization, a set of

imulations were carried out by imposing a pressure difference between

he top and bottom surfaces of the domain consisting of 8000 realistic

rains, p 0 = 0 Pa and p 1 = − 2 MPa, while the lateral surfaces were

losed, and solidification shrinkage and deformation were neglected ( 𝛽

 0, 𝜀̇ 𝑠𝑣 = 0). These conditions provide uni-directional flow with the

ame flow rate of liquid entering and leaving the domain. 

Fig. 10 shows the 3D permeability map and corresponding local

uid velocity resulting from these simulations at solid fractions of (a)

.70 and (b) 0.84 to highlight the capability of the fluid flow model in

redicting the localization of liquid feeding. First, by examining a-1,

t can be seen that the permeability between different grains varies

onsiderably, due to differences in 𝑔 ′𝑠 and the extra-dendritic liquid

hannel width. The maximum local permeability at bulk 𝑔 𝑠 = 0 . 7 is

0,730 μm 

2 ; the value of 0 μm 

2 represents grains that have fully

olidified. As the permeability for globular structures is higher than

endritic structures at the same solid fraction ( Fig. 7 ), this variation in

ocal permeability would lead to further localization in liquid feeding.

econd, by examining a-2, it can be seen that the fluid selectively flows

hrough areas having larger local permeability, at higher local speeds.

t higher solid fraction, 𝑔 𝑠 = 0 . 84 and shown in a-2, the maximum

ocal permeability decreases to 4096 μm 

2 due to the increase in 𝑔 ′𝑠 and

arrowing of the extra-dendritic liquid channels. The maximum liquid

hannel velocity, shown in b-2, consequently also decreases. 

.2. Fluid flow induced by phase changes and tensile deformation 

The 3D dendritic fluid flow model can also be used to calculate

he amount of liquid required to compensate phase changes and

mposed tensile deformations under dendritic solidification conditions.

his requires activation of the shrinkage and deformation terms of

q. 15 ( i.e. 𝛽 ≠ 0 , 𝜀̇ 𝑠𝑣 ≠ 0 follow Eqs. (9) and (13) ). Four different com-

ositions were assessed; Fe-0.07wt%C (non-peritectic), Fe-0.12wt%C
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Fig. 10. Variations in permeability ( − 1) and local velocity ( − 2) within a 

semisolid domain at (a) g s = 0.70 and (b) g s = 0.84. The grain size was 500 μm, 

and the cooling rate was 5 K/s. 

Fig. 11. A comparison of Q / V predicted by the 3D dendritic fluid flow model 

and Eq. (20) as a function of solid fraction for various Fe–C alloys along with 

the pressure contours at three solid fractions for Fe-0.12wt% alloy. The required 

flux to compensate for the peritectic transformation in peritectic grades is also 

included in the flow predictions of the 3D dendritic fluid flow model. Note that 

(b1) and (b2) share the same color bar. 
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hypo-peritectic), Fe-0.16wt%C (peritectic) and Fe-0.18wt%C (hyper-

eritectic). The solidification simulations contained 8000 cubic grains,

00 μm in size, cooled at a rate of 55 K/s. The uniform selection of

rain size (cubic grain) and the high cooling rate ensured the creation

f a fully dendritic semisolid structure. For boundary conditions, the

ow simulation assumed that all the domain surfaces except the one on

he top were closed and a gauge pressure of 0 Pa, was imposed on the

op surface. Hence, the liquid suction from top surface due to shrinkage

nd deformation can be predicted. 

Fig. 11 (a) shows the variation in net liquid flow per unit volume

 Q / V ) predicted by the 3D dendritic fluid flow model to compensate

or solidification shrinkage in all four of the carbon compositions of

nterest assuming 𝛽 ≠0 and 𝜀̇ 𝑠𝑣 = 0. First, as expected, it can be seen that

lthough the predicted inflow of liquid decreases with increasing solid

raction, the net liquid flow is significantly different dependent on alloy

omposition. Interestingly, a sharp rise in net fluid flow is predicted to

e needed to compensate for shrinkage in the peritectic alloy once the

eritectic transformation starts to account for the additional density dif-

erence of the austenitic phase. The sharp rise occurs at a relatively low

olid fraction for the hyper-peritectic alloy, followed by the peritectic

nd hypo-peritectic alloy at increasing g s . The net fluid flow required

hen remains relatively constant until the final stages of solidification. 
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Fig. 12. A comparison of the Q / V predicted by the 3D dendritic fluid flow model 

taking into account both solidification shrinkage and deformation. Strain rates 

of 0.1 s −1 (upper) and 0.001 s −1 (lower) are examined. 
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For a non-peritectic alloy, the amount of liquid required to compen-

ate for solidification shrinkage can also be calculated analytically as 

 

𝑄 

𝑉 

) 

= 𝛽
𝑑 𝑔 𝑠 

𝑑𝑡 
, (20)

here Q and V represent the volumetric flow rate and total domain

olume. For further validation purposes, the shrinkage calculated by

his equation for a Fe-0.07wt%C alloy is also shown in Fig. 11 (a). As

an be seen, a good match is obtained between the simulation and

nalytical curves. 

The amount of liquid required during solidification and peritectic

ransformation can be linked to the formation of casting defects. Liquid

ow that is inadequate to compensate for the solidification shrinkage

ould result in the formation of large voids to maintain continuity. At

ow solid fraction, a high permeability likely allows for adequate liquid

eeding to heal any formed defects. At high solid fraction, Fig. 11 (a)

hows that for the hyper-peritectic alloy, the jump in fluid required

ue to the peritectic transformation occurs at a “low-enough ” solid

raction where the permeability remains relatively high. Using the same

rgument, defects would be most prone to occur in the hypo-peritectic

lloy (Fe-0.12wt%C) since the peritectic transformation occurs at a very

igh solid fraction where the permeability is quite low ( Fig. 11 (a)).

ressure contours of hypo-peritectic alloy are also plotted for different

olid fractions to emphasis the influence of peritectic transformation

hown in Fig. 11 (b). It can be seen that before peritectic transformation,
n increase in solid fraction would result in a minor increase in the

ressure drop by comparing Fig. 11 (b1) and (b2), while a significant

ressure drop occurs after the peritectic transformation as shown in

ig. 11 (b3) which is two orders of magnitude greater than Fig. 11 (b1)

nd (b2). The high pressure drop near the end of solidification would

ccelerate the formation of defects in a hypo-peritectic alloy; a similar

nding has also been reported in prior work [28] . 

Liquid feeding can be also induced by the deformation of the mushy

one. If, concurrently, semisolid tensile deformation is too large and liq-

id feeding is too low, a hot tear will form. Generally, the amount of net

nflow of liquid required during solidification is a given by the combina-

ion of shrinkage and deformation. In order to investigate the dominant

actors that cause hot tearing in hypo-peritectic grades (Fe-0.12wt%C),

nown to be most-sensitive to hot tearing [28] , a series of simulations

ere performed that consider both shrinkage and deformation ( 𝛽 ≠0

nd 𝜀̇ 𝑠𝑣 ≠ 0 ); the same boundary conditions as for Fig. 11 were utilized.

Fig. 12 shows the net flow caused by the combination of solidifi-

ation shrinkage and deformation, and their contributions under two

ifferent strain rates of 0.1 s −1 and 0.001 s −1 . Under the strain rate

f 0.1 s −1 , the induced liquid feeding mainly comes from deformation

t lower solid fractions( < 0.92), and amount of liquid required would

ncrease when the peritectic transformation occurs mentioned in

he prior section. The dominant factor near the end of solidification

ould due to the large amount of shrinkage caused by the peritectic

ransformation. 

Under small strain rate of 0.001 s −1 also shown in Fig. 12 , clearly,

ower strain rates result in a less liquid flow to counteract deformation.

he net flow caused by shrinkage and deformation is dominated by

he solidification shrinkage. In the industrial process, the strain rates

uring casting of steel are thought to be relatively small, on the order

f 10 −3 –10 −4 s −1 . The results shown in Fig. 12 then seem to indicate

hat shrinkage associated with the large interfacial area of the dendritic

tructure is the key factor to cause defects. 

. Conclusions 

A 3D dendritic fluid flow model has been developed to quantitatively

redict the fluid flow behaviour induced by the solidification shrinkage

t the meso-scale, through thousands of equiaxed grains. The model

s based on the Darcy–Brinkman form of the Navier–Stokes equation

t a prescribed solid fraction. Using the framework of the Voronoi

essellation, the tortuosity of flows around the complex interdendritic

hannels was considered. This new technique captures both semi-solid

orphology and the fluid flow behavior during solidification, and pro-

ides an alternative to the convectional experiment for the prediction of

ermeability by using the given surface area concentration. Comparison

f the numerical and experimental permeabilities shows a good agree-

ent (within ± 5%) for either extra-dendrite or intra-dendritic flow,

nd deviation from the conventional Carman–Kozeny equations using

implified Dendritic S v or Globular S v are explained in detail. The results

uantitatively demonstrate the effect of grain size and microstructure

orphology during solidification on the permeability prediction. 

The localization of liquid feeding under the pressure gradient is

lso reproduced in the present investigation. The results highlight the

bility in predicting liquid feeding within a semisolid domain where

ocal permeability varies. Additionally, the advection of fluid due to

hrinkage and deformation for non-peritectic and peritectic steel grades

ith dendritic morphology during solidification was captured for the

rst time, and the results were validated with empirical equations.

ue to the large solid/liquid surface area of the dendritic structure,

he advection of fluid is dominated by the shrinkage during the peri-

ectic phase transformation within the mushy zone under the small

eformation rate, and easily cause the formation of casting defect. 
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